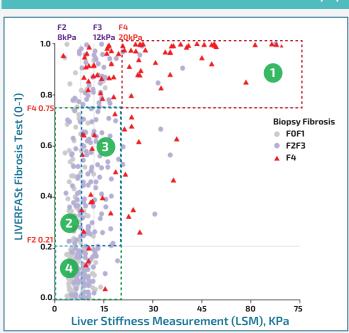


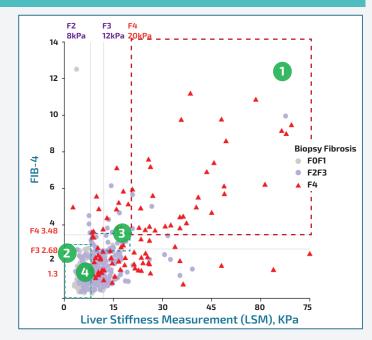
Fibrosis • Activity • Steatosis

1 Blood Draw **> 3** Scores **>** complete evaluation of the liver


LIVERFASt[™] outperforms ELF, FIB-4 and Fibrotest as a MASH patient screening NIT

	LIVERFASt	ELF	FIB-4	Fibrotest
Fibrosis Yes/No	YES	YES	YES	YES
Fibrosis Staging	YES	NO	NO	YES
Activity Staging	YES	NO	NO	NO
Steatosis Staging	YES	NO	NO	NO
Grey-zone	NO	YES	YES	NO
Easy to do	YES	NO	YES	YES
Works in ≥65yrs & T2D	YES	YES	NO	NO

- LIVERFASt[™] stages fibrosis from F0 to F4
- Gives complete liver staging for fibrosis, steatosis & activity in one test
- **Does not miss** F2 or F3 patients because of a "grey zone"
- Identifies twice as many F2 or F3 patients than FIB-4
- Works better in elderly & T2D
- Clinical Path Ready LIVERFASt[™] is ideal first step with Fibroscan
- Great for Screening Identifies more target patients more easily in any setting than other NITs

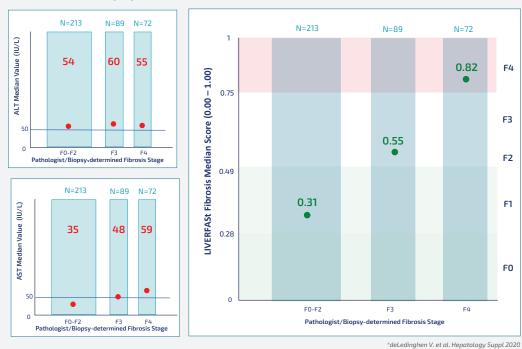

LIVERFASt + Fibroscan outperformed FIB-4 + Fibroscan strategy for identifying more at-risk MASH patients

	STEP ONE – Identify & exclude cirrhosis			
	N=452	LIVERFASt & LSM agree	Liver Biopsy confirms agreement of NITs (n%)	
1	LIVERFASt & LSM agree on cirrhosis F4	47	41 (87%)	
2	LIVERFASt & LSM agree on NO cirrhosis F4	313	295 (94%) Not F4	

	STEP TWO – Identify F2 & F3			
	N=295 without presumed cirrhosis	LIVERFASt & LSM agree	Liver Biopsy confirms agreement of NITs (n%)	
3	LIVERFASt & LSM agree on F2F3	107	74 (69%)	
4	LIVERFASt & LSM agree on NO F2F3	85	55 (65%) F0F1	

- LIVERFASt + LSM identifies more F4 livers correctly than FIB-4 + LSM, 41 vs 31
- LIVERFASt provides a continuous score from 0 to 1, differentiating between each different stage of fibrosis
- LIVERFASt + LSM identifies 74 out of 107 F2F3 fibrosis patients correctly (69%)

	STEP ONE – Identify & exclude cirrhosis			
	N=452	FIB-4 & LSM agree	Liver Biopsy confirms agreement of NITs (n%)	
9	FIB-4 & LSM agree on cirrhosis F4	35	31 (89%)	
	FIB-4 & LSM agree on NO cirrhosis F4	367 (199 with FIB-4 <1.3 or 2.68-3.48 +168 Grey Zone	337 (92%) Not F4	


	STEP TWO – Identify F2 & F3			
	N=337 without presumed cirrhosis with both NITs	FIB-4 & LSM agree	Liver Biopsy confirms agreement of NITs (n%)	
E	FIB-4 & LSM agree on F2F3	19 presumed F3 (+106 Grey Zone, presumed F2)	10 (53%) F3 23(22%) F2 Grey Zone*	
4	FIB-4 & LSM agree on NO F2F3	99	60 (61%) F0F1	

*If 1 stage discordance between FIB-4 and LSM is accepted, the 86 (69%) (13 between 2.68-3.48 and 73 GZ) are confirmed F2 or F3

- The use of rule-in/rule-out cut-offs results in a grey zone, making it difficult to specify F2 stage of fibrosis
- FIB-4 + LSM identifies only 33 out of 125 F2F3 livers correctly (26%)
- FIB-4 + LSM is in practice not as efficient as a 2 sequenstial NIT strategy for F2F3F4 stages

Overall MASLD population (n=452) with LB ≥2cm

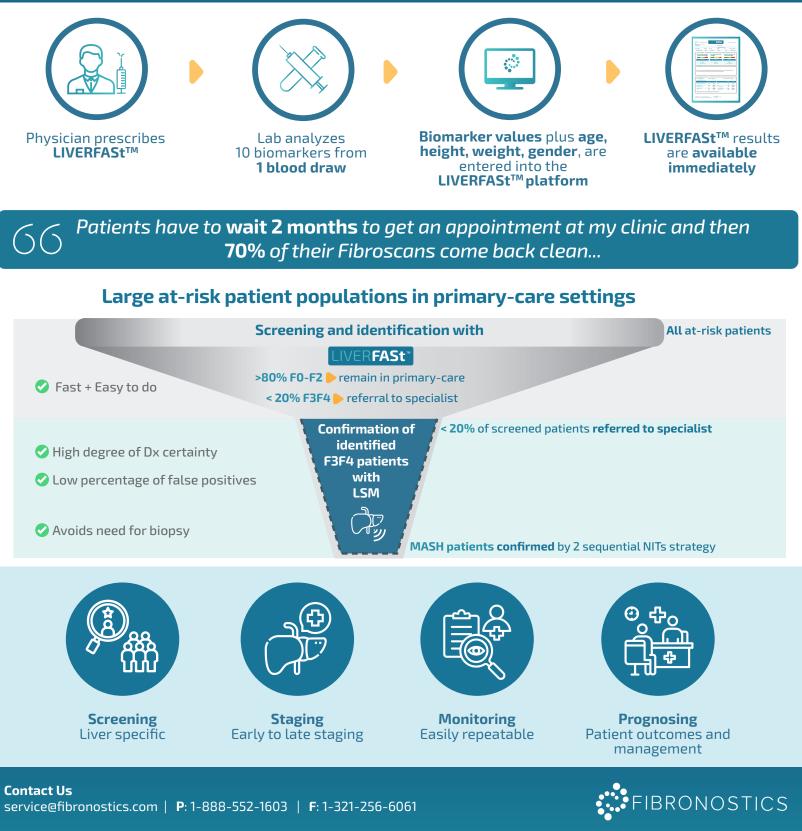
LIVERFASt[™] predicts biopsy results, ALT and AST do not

[•] LIVERFASt scores correlate with biopsy stage of fibrosis as determined by a pathologist

- ALT and AST values are random, do not correlate with biopsy determined staging
- ALT and AST values go down naturally with increasing age
- Since FIB-4 depends on both ALT and AST, it does not and cannot work well as a screening and identification tool for fibrosis
- LIVERFASt is a useful tool to screen at-risk patients for advanced liver disease
- LIVERFASt is easy to do, using standard blood biomarkers

LIVERFASt has high clinical performance for Fibrosis & Activity

LIVERFASt Activit	y Test performance	LIVERFASt Fibro	sis Test performance
MASLD population (n=223)		MASLD pop	ulation (n=223)
AUROC (95% CI)	0.79 (0.71 - 0.85)	AUROC (95% CI)	0.867 (0.807 - 0.910
Specificity	0.85	Specificity	0.85
Sensitivity	0.59	Sensitivity	0.75
Negative Predictive Value	0.65	Negative Predictive Value	0.88
Positive Predictive Value	0.85	Positive Predictive Value	0.71


The concordance for cirrhosis with Liver Biopsy (n=452)			
LIVERFASt	LSM	FIB-4	
67/95 (71%)	51/95 (54%)	45/95 (47%)	

Only LIVERFASt provides clinically and therapeutically relevant identification of fibrosis and activity in ONE easy-to-do blood-based test.

LIVERFASt combines well with LSM in a 2 step sequential NIT strategy from screening, identification and monitoring of at-risk MASH patients.

Overall MASLD population (n=374)

Easy to do in multiple settings to help specialists manage MASH

- n MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018 Feb 26;20(2):12. , A.V. et al. "Metabolic syndrome and non-alcoholic fatty liver disease". Ann Hepatol 2009;8 Suppl
- . sissi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty ease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016
- 3-04 cker M, Dutartre D, Hiriart JB, Irles-Depé M, Chermak F, Foucher J, de Lédinghen V. Long-term prognosis s with metabolic (dysfunction)-associated fatty liver disease by non-invasive methods. Aliment I Ther. 2022 Mar;55(5):580-592.
- rmacol Ther. 2022 Mar.55(5):580-592. Iohamad Nor MH, Ayob N, Mokhtar NM, Raja Ali RA, Tan GC, Wong Z, Shafiee NH, Wong YP, Mustangin M, vawi KNM. The Effect of Probiotics (MCP® BCMC® Strains) on Hepatic Steatosis, Small Intestinal Mucosal nune Function, and Intestinal Barrier in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients. 2021 Sep 3(9):3192

- ic ovary syndrome olic Dysfunction-Associated Steatotic Liver Disease lic Dysfunction-Associated Steatohepatitis

FIBRONOSTICS US, INC. 274 E. Eau Gallie Blvd., #346 Indian Harbour Beach, FL 32937

For more information, please visit www.fibronostics.com

FIB-USA-LF-SPC-BRO_00