

#24

Application of LIVERFASt to Predict Steatosis in Chronic Hepatitis B Patients with Metabolic Syndrome

Mati Ullah Dad Ullah1, Mansoor Rahman1, Medhi Sakka2, Rana Alkouri2, Muhammad Asad Raza1, Dr. Mukarram Jamat Ali1, Karen Campoverde Reyes1, Maxime Deregnaucourt2, Dominique Bonnefont-Rousselot2,3, Ronald Quiambao4, Mona Munteanu4 and Daryl T. Y. Lau1

1Beth Israel Deaconess Medical Center, Harvard Medical School, USA, 2Metabolic Biochemistry Department, Pitié-Salpêtrière Hospital, Public Assistance Paris Hospitals, Aphp Sorbonne University, France, 3Pharmacy Training and Research Unit (UFR), Paris Cité University; Cnrs, Inserm, Utcbs, France, 4Fibronostics US Inc, USA

BACKGROUND / INTRODUCTION

- Chronic hepatitis B (CHB) and non-alcoholic fatty liver disease (NAFLD) are both common liver conditions
- 30 40% of CHB patients also have NAFLD which are associated with high prevalence of type 2 diabetes and metabolic syndrome
- Patients with both CHB and NAFLD have increased risk of advanced hepatic fibrosis and hepatocellular carcinoma
- It is important to identify CHB patients who have co-existing NAFLD without a liver biopsy

AIMS

- To evaluate the prognostic values of LIVERFASt as a noninvasive biomarker in detecting hepatic steatosis in chronic hepatitis B
- To correlate LIVERFASt steatosis with Fibroscan Controlled Attenuation Parameter (CAP) scores

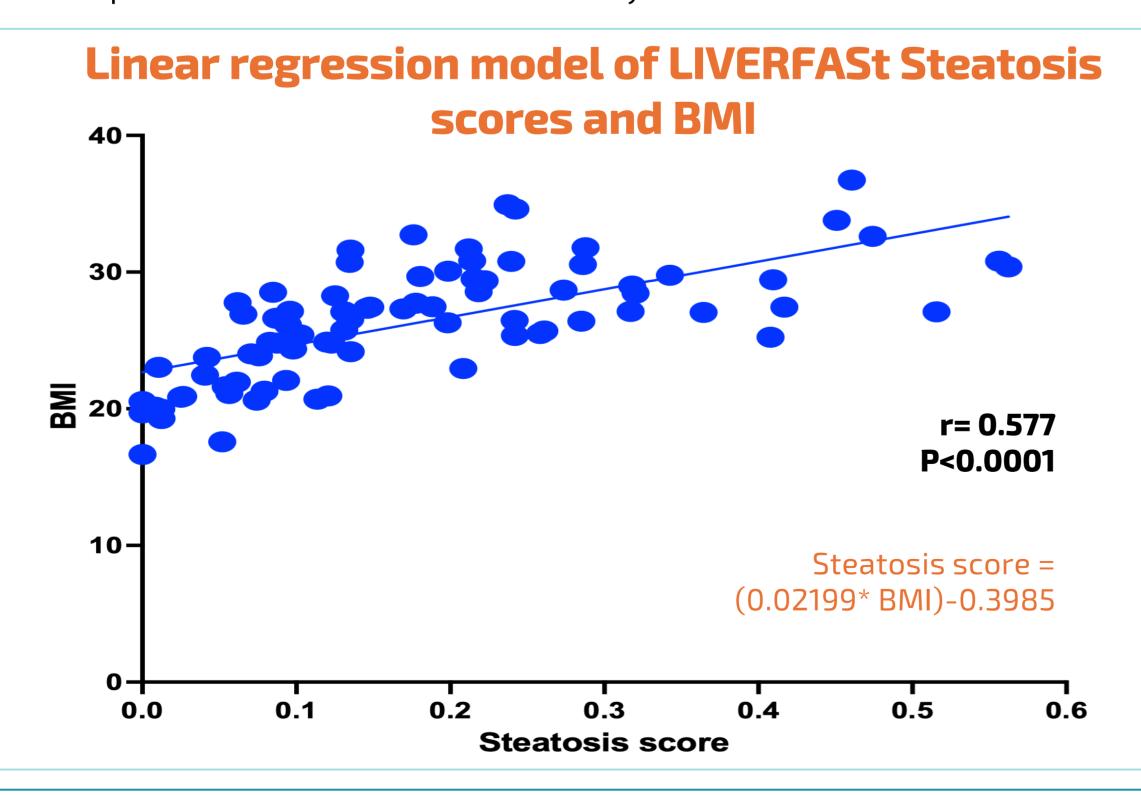
METHODS

- Retrospective study in a single tertiary Liver Center
- Based on the availability of fasting sera, we identified 2 groups:
 - Chronic hepatitis B with metabolic syndrome (MS-HBV)
 - Chronic hepatitis B alone as controls (C-HBV)
- LIVERFASt TM scores were computed for each sample
- Medical record review was performed to record and document demographics, clinical and HBV status of patients

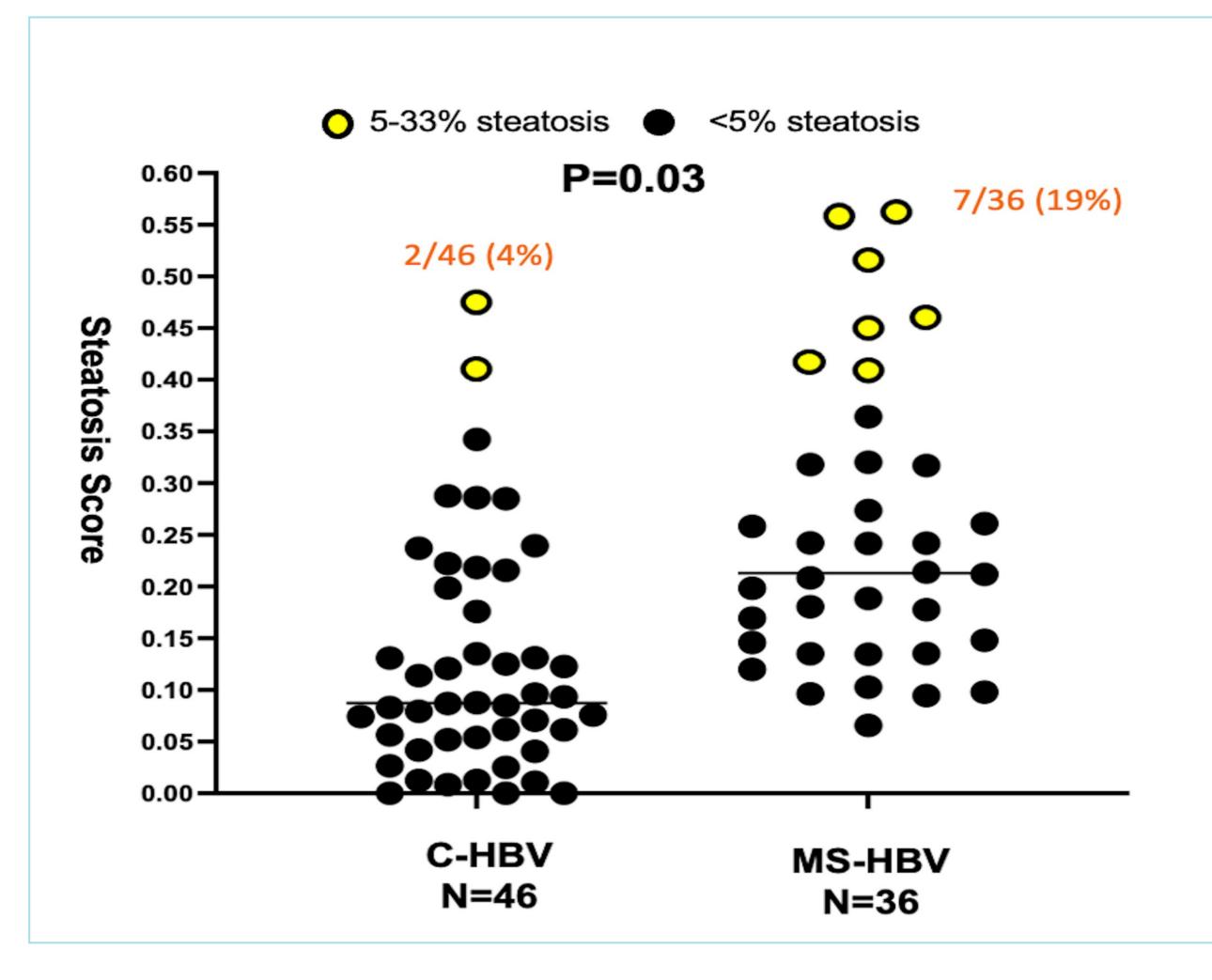
Required Biomarkers of LIVERFASt

LIVERFASt				
Biomarkers in SI units	Fibrosis test	Activity test	Steatosis test	
		Quantitative scores (0-1)		
Age, yrs	х	X	х	
Gender	X	X	х	
BMI, kg/m ²			х	
Alpha2-macroglobulin, g/l	х	X	х	
Apolipoprotein A1, g/l	X	X	х	
Haptoglobin, g/l	X	X	х	
Total bilirubin	X	Х	х	
Gamma glutamyl transpeptidases (GGT), IU/I	Х	Х	X	
Alanine aminotransferases (ALT), IU/L		Х	X	
Triglycerides, mmol/L			х	
Fasting glucose, mmol/L			х	
Total cholesterol, mmol/L			х	
Aspartate aminotransferases (AST), IU/I			×	

RESULTS

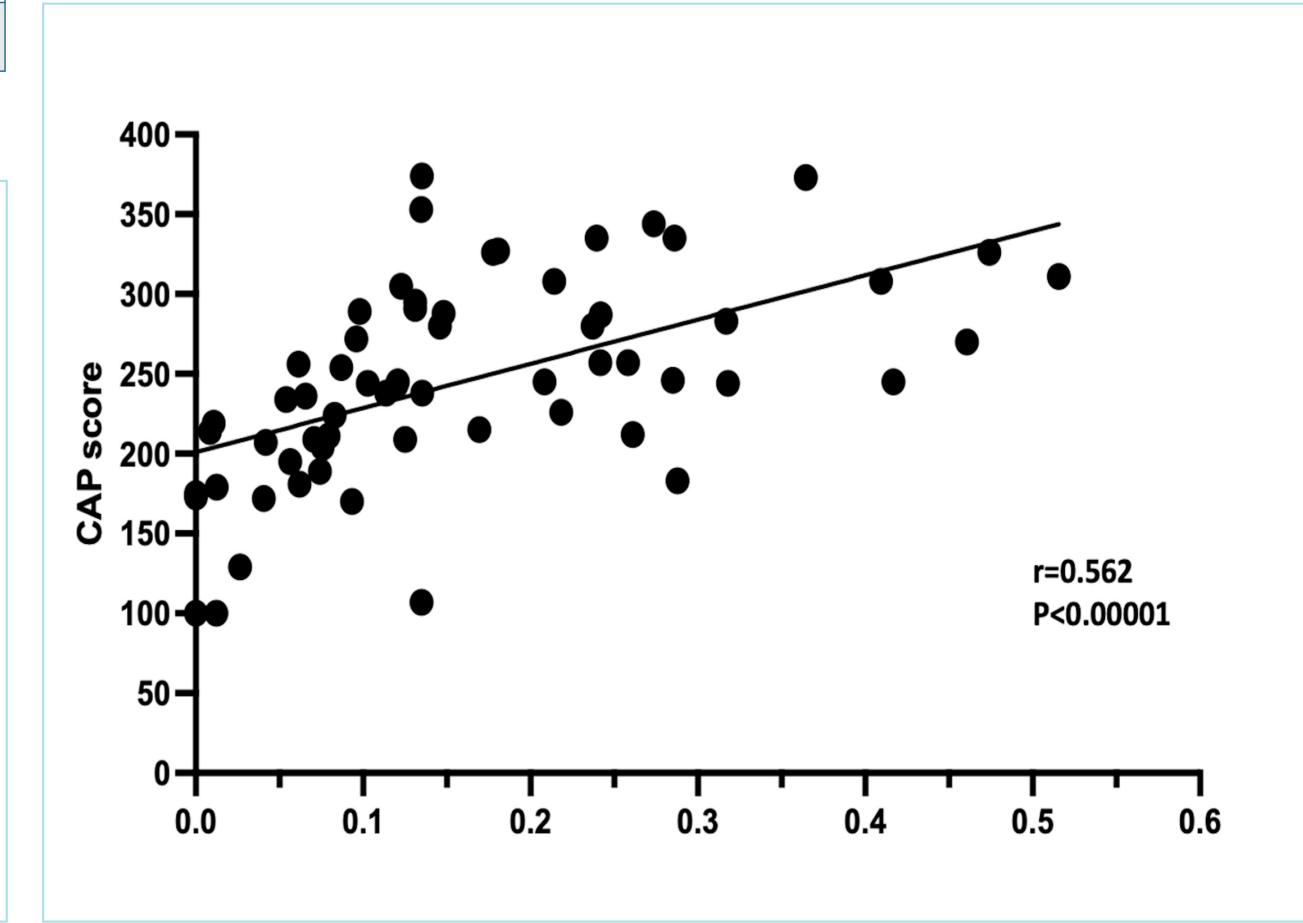

Demographics and clinical characteristics

	MS-HBV N=36	C-HBV N=46	P Value
Age (Years)	50(24-72)	46(25-63)	0.17
Gender (M:F)	24:12	22:24	0.08
Asian (%)	30 (83%)	31 (67%)	0.1
BMI (kg/m²)	28 (23-37)	25 (16-35)	0.001
ALT (U/L)	42 (14-155)	27 (4-92)	0.002
AST (U/L)	30 (18-54)	25 (12-60)	0.01
HbA1c (%)	6.1 (5.1 – 8.4)	5.2 (4,1 – 5,8)	<0.0001
HBV DNA > 2000IU/ml n(%)	5 (14%)	7 (15%)	NS
HBV antiviral n(%)	15 (42%)	17 (37%)	NS


Correlation between LIVERFASt Steatosis scores and clinical parameters

Clinical Parameters	Correlation	P value		
Steatosis score vs BMI	R = 0.577	<0.00001		
Staetosis score vs HbA1c%	R = 0.319	0.0035		
Steatosis score vs Fibrosis score*	R = 0.058	0.60		
* O (, (110/) 1.7((,0/) ENAC HD)/ LC HD)/ LC' '				

* Only 4 (11%) and 2(4%) of MS-HBV and C-HBV had Fibrosis ≥ F2, respectively All the patients in this cohort had A0 Activity score



Higher frequency of Steatosis among MS-HBV

- The proportions of patients on antiviral therapy for CHB were similar
- 19% in MS-HBV and only 4% in C-HBV were identified to have steatosis

Significant correlation between CAP and LIVERFASt steatosis scores

- 54(66%) patients had Fibroscan with CAP within 2 years of LIVERFASt test.
- Patients with changes in BMI > 2 were excluded in this correlation analysis

CONCLUSIONS

- LIVERFASt has prognostic values in detecting steatosis among CHB patients with metabolic syndrome
- There are significant correlations between the LIVERFASt steatosis score with BMI and CAP score (Fibroscan)
- These positive observations need to be validated with a more racially diverse, larger cohorts.

